Parsimonious Inference on Convolutional Neural Networks: Learning and applying on-line kernel activation rules

نویسندگان

  • Ilias Theodorakopoulos
  • V. Pothos
  • Dimitris Kastaniotis
  • Nikos Fragoulis
چکیده

A new, radical CNN design approach is presented in this paper, considering the reduction of the total computational load during inference. This is achieved by a new holistic intervention on both the CNN architecture and the training procedure, which targets to the parsimonious inference by learning to exploit or remove the redundant capacity of a CNN architecture. This is accomplished, by the introduction of a new structural element that can be inserted as an add-on to any contemporary CNN architecture, whilst preserving or even improving its recognition accuracy. Our approach formulates a systematic and data-driven method for developing CNNs that are trained to eventually change size and form in real-time during inference, targeting to the smaller possible computational footprint. Results are provided for the optimal implementation on a few modern, high-end mobile computing platforms indicating a significant speed-up of up to x3 times.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method to Improve Automated Classification of Heart Sound Signals: Filter Bank Learning in Convolutional Neural Networks

Introduction: Recent studies have acknowledged the potential of convolutional neural networks (CNNs) in distinguishing healthy and morbid samples by using heart sound analyses. Unfortunately the performance of CNNs is highly dependent on the filtering procedure which is applied to signal in their convolutional layer. The present study aimed to address this problem by a...

متن کامل

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

Integration of Deep Learning Algorithms and Bilateral Filters with the Purpose of Building Extraction from Mono Optical Aerial Imagery

The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...

متن کامل

Introducing a method for extracting features from facial images based on applying transformations to features obtained from convolutional neural networks

In pattern recognition, features are denoting some measurable characteristics of an observed phenomenon and feature extraction is the procedure of measuring these characteristics. A set of features can be expressed by a feature vector which is used as the input data of a system. An efficient feature extraction method can improve the performance of a machine learning system such as face recognit...

متن کامل

Pruning Convolutional Neural Networks for Resource Efficient Inference

We propose a new formulation for pruning convolutional kernels in neural networks to enable efficient inference. We interleave greedy criteria-based pruning with finetuning by backpropagation—a computationally efficient procedure that maintains good generalization in the pruned network. We propose a new criterion based on Taylor expansion that approximates the change in the cost function induce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1701.05221  شماره 

صفحات  -

تاریخ انتشار 2017